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Abstract. Coherent states for quons are constructed as eigenstates of the annihilation operator
and their properties are studied. In particular, it is shown that these states form a complete set
with respect to a measure.

1. Introduction

Parastatistics was introduced by Green (1953) who observed that it is not necessary for
all particles in nature to be either bosons or fermions because the principles of quantum
field theory allow a more general statistics which includes the usual ones as limiting cases.
More recently Greenberg (1991, 1992) and Mahapatra (1990) have considered the possible
small violation of the Pauli principle as an experimental test for confirming the existence
of such statistics. These authors introduce a deformed algebra containing a parameterq

(−1 6 q 6 1). Forq = −1 or +1, the algebra reduces to the fundamental anticommutation
or commutation relations appropriate to fermions or bosons, respectively. The intermediate
statistics for other values ofq smoothly interpolates between the two observed limits. The
elementary excitations of such fields were namedquons. The Fock-like space generated by
the quonic excitation operator is a positively normed space and a unique number operator
with integer eigenvalues can be constructed. The caseq = 0 is somewhat special being
a singular limit (Mahapatra 1990) for the number operator. It has been studied in greater
detail (Greenberg 1990).

In this paper we confine ourselves mainly to the interval 06 q 6 1. The caseq < 0
will be briefly touched upon in our concluding remarks. Sinceq = 1 is the bosonic case
and the harmonic oscillator coherent states or Glauber coherent states are well known and
extensively studied (Glauber 1963, Sudarshan 1963) we construct the quonic coherent states
appropriate to the above-mentioned interval and show that it has properties consistent with
the bosonic limit. The question of completeness is dealt with in some detail through an
explicit construction of the measure. The paper is organized as follows. We start with a
brief review of the quonic algebra in section 2. Sections 3 and 4 constitute the main body
of the paper. We conclude in section 5 with a few pertinent remarks.

2. The quon algebra

Let us introduce the quon creation operatora† and the corresponding annihilation operator
a for a single level. They constitute a deformed algebra with the following relation
(appropriately termed aq-mutator),

aa† − qa†a = 1 − 1 6 q 6 1. (1)
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We assume the existence of a unique vacuum|0〉 which is destroyed by the annihilation
operator

a|0〉 = 0. (2)

As usual the number states are generated by repeated applications of the creation operator
on the vacuum,

a†|0〉 = t1|1〉 t1 ≡ 1

a†|1〉 = t2|2〉
...

a†|n − 1〉 = tn|n〉 (3)

where the coefficientsti are taken for simplicity to be real. We may, therefore, write

|n〉 = (t1t2 . . . tn)
−1(a†)

n|0〉
≡ (a†)n

hn

|0〉. (4)

The matrix elements ofa anda† in the number states are therefore of the form

〈m|a|n〉 = tnδm,n−1 〈m|a†|n〉 = tn+1δm,n+1. (5)

Taking matrix elements of (1) and using (5), we arrive at a recursion relation for the
coefficientstn, namely

tn
2 − qtn−1

2 = 1 (6)

which is readily solved to yield

tn
2 = 1 + q + · · · + qn−1 = 1 − qn

1 − q
. (7)

For bosons(q = 1), tn = √
n as expected. For fermions, on the other hand,t2 = 0 and

only the vacuum and one particle state survive to account for the Pauli principle. Forq = 0
(infinite statistics), all thetn become 1.

A number operator forq > 0 has been devised (Mahapatra 1990) and takes the form

N = ln[1 − (1 − q)N0]

ln(q)
(8)

whereN0 = a†a. Writing q = 1 − ε, it is easy to see thatN |n〉 = n|n〉. For q = 1, N is
simply a†a as it should be. However, forq = 0, N is singular. In this case it is easy to
check that the appropriate number operator (Mahapatra 1990) is

N =
∞∑

m=1

(a†)
m
(a)m. (9)

The states|n〉 as eigenstates of a Hermition number operatorN provide a complete
orthonormal basis,∑

n

|n〉〈n| = 1 〈n|m〉 = δn,m. (10)
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3. The coherent state

The most general way to introduce a coherent state is through the action of a unitary
displacement operator on a reference state (Perelomov 1986, Zhanget al 1990) which may
be the vacuum. Other methods involve the construction of an eigenstate of the annihilation
operator (Glauber 1963, Sudarshan 1963) or a state which yields a minimum uncertainty
product (Nieto and Simmons 1978). Depending on the nature of the spectrum, one or the
other of the above methods may be employed. In the case of the harmonic oscillator, when
the vacuum is the reference state, all three approaches result in the same state.

In the present case we define the coherent state as an eigenstate of the annihilation
operator, namely

a|α〉 = α|α〉 (11)

where the eigenvalueα is a complex number. We substitute the expansion of|α〉 in the
number states,

|α〉 =
∑

n

cn|n〉 (12)

in equation (11) and equate the coefficients of|n〉. This yields

cn = c0
αn

hn

h0 ≡ 1. (13)

c0 is obtained by imposing the normalization condition〈α|α〉 = 1 and the normalized
coherent state takes the form

|α〉 =
[ ∑

n

|α|2n

hn
2

]−1/2 ∞∑
n=o

αn

hn

|n〉. (14)

We define a functionf (s) as

f (s) =
∞∑

n=o

sn

hn
2 (15)

and use (4) to arrive at the following convenient form for the normalized coherent state:

|α〉 = [
f (|α|2)]−1/2

f (αa†)|0〉. (16)

The bosonic limit is reproduced by observing that forq = 1, hn = √
n! and consequently

f (s) = es .
The average number of particles in the state|α〉 is given by the diagonal matrix element

of the number operator defined in (8). It is easily found to be

〈α|N |α〉 = |α|2 d

d(|α|2) ln f (|α|2) (17)

and reduces to|α|2 in the bosonic case as expected.
The functionf (s) as given by (15) is convergent within a circle whose radius increases

from 1 for q = 0 to infinity for q = 1. Outside this circle the function will be defined
by analytic continuation. It is easy to find an expression for the radius of convergence.
The ratio of the (n + 1)th to thenth term of the series forf (s) is s(1 − q)/(1 − qn+1)

which goes tos(1− q) asn approaches∞. Hence the radius of convergence is 1/(1− q).
Since the departure of the function lnf (s) from the diagonal line(ln f (s) = s) indicates
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Figure 1. The function lnf (s) is displayed as
a function ofs. The straight line corresponds to
q = 1.

the departure from the bosonic limit, we give a plot (figure 1) of the function for several
values ofq. On the other hand, forq = 0 we have to use expression (9) for the number
operator to obtain

〈α|N |α〉 = |α|2
1 − |α|2 . (18)

In this case, only states with|α|2 < 1 will be allowed.
The inner product of two coherent states|α〉 and |β〉 can be readily found as

〈α|β〉 = f (α∗β)

[f (|α|2)f (|β|2)]1/2
(19)

showing that the states are not orthogonal. This is expected because the operatora is not
Hermitian.

To investigate the time evolution of these coherent states let us consider a simple
Hamiltonian such asH = ωN . Since the time evolution of each stationary state is given
by |n(t)〉 = |n(0)〉 exp(−inωt) it is easy to see that under this Hamiltonian a coherent
state will remain a coherent state withα(t) = α(0) exp(−iωt). This is also evident from
the Heisenberg equation of motion fora, namely da/dt = −i[a, H ] = −iωa, since the
operators [a, N ] and a are equal, both having the same matrix elements.

4. Completeness of the coherent states

We now investigate the completeness property of the coherent states. We assume the
existence of a weight functionµ(α) such that the resolution of the identity operator reads∫

|α〉〈α|µ(α) d2α = 1 (20)

where d2α = d(Reα)d(Im α). Substituting for|α〉 in (20), we have∑
m,n

∫
[f (|α|2)]−1 α∗mαn

hmhn

|n〉〈m|µ(α) d2α = 1. (21)
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Taking diagonal matrix elements and using the orthonormality of the|n〉 states, we see that∫
[f (|α|2)]−1(|α|2)nµ(α) d2α = h2

n. (22)

On the other hand, writing d2α = 1
2d(|α|2) dφ andα = |α|eiφ , we can use

1

2π

∫ 2π

0
ei(n−m)φ dφ = δn,m

only whenµ(α) is independent of the phase ofα, i.e. µ(α) = µ(|α|2) and arrive at (22).
We, therefore, write∫ ∞

0
[f (s)]−1snµ(s) ds = h2

n

π
(23)

wheres stands for|α|2.
Equation (23) provides the moments ofµ(s)/f (s). The problem of finding a suitable

measure thus reduces to a moment problem (Mukundaet al 1980, Sharmaet al 1981).
By multiplying both sides of (23) by(iy)n/n! and summing overn we obtain∫ ∞

0
[f (s)]−1eisyµ(s) ds = φ(y). (24)

The functionφ(y), given by

φ(y) = 1

π

∞∑
n=0

(iy)nh2
n

n!

is absolutely convergent for|y| < 1 and for|y| > 1 may be defined by analytic continuation.
We can now determine the weight function by taking an inverse Fourier transformation of
equation (24). The result is

µ(s) = f (s)

2π

∫ ∞

−∞
φ(y)e−isy dy. (25)

We readily check that (25) yields the right measure for the bosonic coherent states for
which φ(y) = 1/π(1 − iy). This has a pole aty = −i and an integration in the lower-half
plane enclosing the pole yieldsµ(s) = 1/π . However, for infinite statistics the measure is
singular. In this case,φ(y) = eiy/π and consequentlyµ(s) = 2f (s)δ(s − 1) which shows
that the coherent states forq = 0 are complete on the unit circle. However, these are the
states for which the average number of particles is infinite.

By virtue of (20) an arbitrary state|β〉 has an expansion in the coherent state basis,
namely

|β〉 =
∫

f (α∗β)

[f (|α|2)f (|β|2)]1/2
|α〉µ(α) d2α. (26)

The above equation shows that the coherent states introduced form an overcomplete set
(Perelomov 1986). Moreover from (26) we also observe the self-reproducing property of
the f ’s, namely

(α∗β) =
∫

f (α∗γ )f (γ ∗β)

f (|γ |2) µ(γ ) d2γ. (27)
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5. Concluding remarks

So far we have not said anything about theq < 0 case. We observe that the construction
given by (14) and (16) is valid for parafermions as well. The only difference is that the radius
of convergence of the series forf (s) is further reduced to 1/(1+|q|). The impossibility of
annihilation operator coherent states for a finite spectrum is reflected in the singular nature
of the fermionic limit where all thehn’s are zero excepth0 andh1 which are 1. However,
since states higher than|1〉 are absent expression (14) yields

|α〉 = [1 + |α|2]−1/2[|0〉 + α|1〉]
which can be identified with the angular momentum coherent states forj = 1

2 obtained
by the action of the unitary displacement operator exp(βa† − β∗a) on the state of lowest
weight, namely| 1

2, − 1
2〉 whereβ andα are related through the following parametrization:

β = (θ/2) exp(−iφ), α = tan(θ/2) exp(−iφ) (0 6 θ 6 π, 0 6 φ 6 2π ). This is due to
the fact that the fermionic operatorsa, a† and(a†a − 1

2) satisfy the same algebra asJ−, J+
andJ0 for j = 1

2. The proof for completeness goes through forq < 1 as well. The weight
factor µ(s) in this case is non-zero within the unit circle. This can be inferred from (23)
showing that the higher moments are damped out faster asq approaches−1. Again this
argument does not hold in the fermionic limit where the measure is(1/2π) sinθ dθ dφ, as is
appropriate for displacement operator coherent states. Further investigations into the nature
of these coherent states are hampered by the fact that a suitable number operator is not
available forq < 0.

In a recent paper Campos (1994) defines the coherent state as a displacement of the
vacuum. He writes

|α〉 = N exp(αa†)|0〉 = N
∑

n

αnhn

n!
|n〉

where the normalization constantN is given by

N =
[ ∑

n

(|α|)2nh2
n

(n!)2

]−1/2

.

This agrees with our coherent states only in the bosonic limit as it should. However, the
problem of defining a coherent state for generalq by using a unitary operator, still remains.
A related problem awaiting this particular development is the construction of squeezed
coherent states which are obtained by successively applying a unitary squeezing operator
first and then a unitary displacement operator on the vacuum.
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